Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Chemistry ; : e202304065, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487973

RESUMO

Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.

2.
Proteomics ; : e2300396, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522031

RESUMO

The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage. A comprehensive analysis revealed 713 differentially expressed proteins (DEPs) exhibiting five distinct temporal expression patterns. Through the application of weighted gene co-expression network analysis (WGCNA), 24 potential driver proteins of tooth development were screened, including CHID1, RAP1GDS1, HAPLN3, AKAP12, WLS, GSS, DDAH1, CLSTN1, AFM, RBP1, AGO1, SET, HMGB2, HMGB1, ANP32A, SPON1, FREM1, C8B, PRPS2, FCHO2, PPP1R12A, GPALPP1, U2AF2, and RCC2. Then, the proteomics and transcriptomics expression patterns of these proteins were further compared, complemented by single-cell RNA-sequencing (scRNA-seq). In summary, this study not only offers a wealth of information regarding the molecular intricacies of human embryonic epithelial and mesenchymal cell differentiation but also serves as an invaluable resource for future mechanistic inquiries into tooth development.

3.
Org Lett ; 26(9): 1857-1862, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407095

RESUMO

A general method for the hydrogenation of quinones to hydroquinones under atmospheric pressure has been developed. In the presence of [Cp*Ir(2,2'-bpyO)(H2O)] (0.5-1 mol %), a range of products were obtained in high yields. Furthemore, the expansion of this catalytic system to the hydrogenation of 1,4-benzoquinone diimines was also presented. Functional groups in the bpy ligand were found to be crucial for the catalytic activity of iridium complexes.

4.
Transl Pediatr ; 13(1): 72-90, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323178

RESUMO

Background: Cerebral palsy (CP) is a unique neurological disorder which adversely affects motion. Cytokines and gut microbial composition contribute to CP and other diseases, such as reproductive tract inflammation and bone loss. Importantly, Saccharomyces boulardii (S. boulardii) reduces the degree of inflammation and improves overall health status. As our previous study showed that Lactobacillus rhamnosus (L. rhamnosus) OF44, a selected strain of gut bacteria originally used to treat reproductive tract inflammation and bone loss, has effects similar to that of S. boulardii, we decided to use L. rhamnosus OF44 on CP rats. Validation of the effects of L. rhamnosus OF44 on CP adds to its confirmed effects in treating osteoporosis and reproductive tract microbiota disorders, increasing its potential as a probiotic. The purpose of this was to ascertain whether L. rhamnosus OF44 can alleviate the symptoms of CP. Methods: CP rat models were created through left carotid artery ligation. Following this, 100-day old CP rats were exposed to L. rhamnosus OF44, S. boulardii, or normal saline gastric gavage daily for 28 days. Grouping of the rats is determined randomly. Before and after the gavage, behavioral experiments were conducted and the inflammation levels assessed via measurements of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) inflammatory markers. The efficacy of the outcome is measured by performing statistical analysis like the t-test on the data to see its significance. Additionally, variations inside gut microbiome were evaluated via 16S ribosomal RNA sequencing. Results: Before intervention, CP rats failed to exhibit depression-like behavior (P=0.6). L. rhamnosus OF44 treatment significantly reduced the level of IL-6 (P=4.8e-05), S. boulardii treatment significantly reduced the level of TNF-α (P=0.04). In addition, both treatments altered the composition and complexity of the gut microbiome. Conclusions: Our results indicated that L. rhamnosus OF44 has potential in alleviating inflammation and altering the gut microbial composition in CP, and that it has the potential to clinically treat CP. There are some limitations of this study. For example, dietary differences and their effects on gastrointestinal dysfunction are not considered in this study, and only two behavioral experiments were used.

5.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334534

RESUMO

Diluted magnetic semiconductors (DMSs) with tunable ferromagnetism are among the most promising materials for fabricating spintronic devices. Some DMS systems have sizeable magnetoresistances that can further extend their applications. Here, we report a new DMS Rb(Zn1-x-yLiyMnx)4As3 with a quasi-two-dimensional structure showing sizeable anisotropies in its ferromagnetism and transverse magnetoresistance (MR). With proper charge and spin doping, single crystals of the DMS display Curie temperatures up to 24 K. Analysis of the critical behavior via Arrott plots confirms the long-range ferromagnetic ordering in the Rb(Zn1-x-yLiyMnx)4As3 single crystals. We observed remarkable intrinsic MR effects in the single crystals (i.e., a positive MR of 85% at 0.4 T and a colossal negative MR of -93% at 7 T).

6.
BMC Pediatr ; 24(1): 118, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355440

RESUMO

BACKGROUND: Prader-Willi syndrome (PWS) is a rare genetic disease often associated with bone problems, mainly scoliosis and hip dysplasia (HD). This study aimed to analyze the clinical characteristics of orthopedic deformities in patients with PWS. METHODS: A retrospective study was conducted on 175 patients up to March 2023. The Cobb angle(CA) of the spine, the alpha angle of the hip joint, and the acetabular index (AI) were measured. This study aimed to evaluate the relationship between demographic parameters and bone deformities. RESULTS: Scoliosis was found in 66 patients (43.7%), including 52 (78.8%) with mild scoliosis, 10 (15.2%) with moderate scoliosis, and 4 (6.1%) with severe scoliosis. Only seven patients received orthopedic treatment (10.6%). The median age of scoliosis was 4.5 years old, and the prevalence of scoliosis increased rapidly at the age of 5 years and adolescence. The mean CA in this study increased gradually with age. HD was found in 47 patients (38.2%), and 6 patients received orthopedic treatment (12.7%). The median age at HD was 1.8 years old. The mean AI of the study population decreased with age. The prevalence of HD treated with recombinant human growth hormone (rhGH) was low. No significant differences were observed in sex, genotype, body mass index (BMI), obesity rate, or onset of scoliosis and HD. CONCLUSION: The prevalence of scoliosis and HD was higher in patients with PWS. The onset age and developmental trends of the different skeletal malformations were different. Early diagnosis and treatment are important for the prognosis and treatment of orthopedic diseases in patients with PWS.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Prader-Willi , Escoliose , Criança , Adolescente , Humanos , Pré-Escolar , Lactente , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/tratamento farmacológico , Escoliose/etiologia , Estudos Retrospectivos , Hormônio do Crescimento Humano/uso terapêutico , Obesidade/complicações
7.
ACS Appl Mater Interfaces ; 16(3): 3289-3301, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207000

RESUMO

NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a widely used solid electrolyte in solid-state lithium batteries, owing to its excellent chemical stability against moisture and high total ionic conductivity. However, traditionally, densification of LATP has been achieved through a high-temperature sintering process (approximately 1000 °C) owing to its poor sinterability. Herein, we report a facile synthesis route to obtain highly sinterable LATP solid electrolyte using tetrabutyl titanate (C16H36O4Ti) as the titanium source and incorporating the traditional solid-state reaction method. The synthetic LATP powder mixed with a low ratio of LiTiPO5 exhibited a hybrid crystalline-amorphous phase structure, which facilitated grain fusion, promoted structural homogeneity, and facilitated structural densification under low-temperature sintering. The sintered LATP pellet, which exhibited an interconnected structure and indistinct grain boundaries, achieved a relative density of >90% and an ionic conductivity of 0.667 mS/cm at a sintering temperature of only 750 °C. Additionally, we systematically studied and demonstrated the synthesis reaction mechanism, sintering behavior, and ionic diffusion kinetics of LATP electrolytes. Our study paves the way for synthesizing highly sinterable LATP solid electrolytes using a simple, additive-free, and cost-effective method.

8.
Anim Biosci ; 37(1): 84-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37592379

RESUMO

OBJECTIVE: The objective of this study was to investigate how cellulase or/and lactic acid bacteria (LAB) affected the fermentation characteristic and microbial community in wet brewer's grains (WBG) and corn stover (CS) mixed silage. METHODS: The WBG was mixed thoroughly with the CS at 7:3 (w/w). Four treatment groups were studied: i) CON, no additives; ii) CEL, added cellulase (120 U/g fresh matter [FM]), iii) LAB, added LAB (2×106 cfu/g FM), and iv) CLA, added cellulase (120 U/g FM) and LAB (2×106 cfu/g FM). RESULTS: All additive-treated groups showed higher fermentation quality over the 30 d ensiling period. As these groups exhibited higher (p<0.05) LAB counts and lactic acid (LA) content, along with lower pH value and ammonia-nitrogen (NH3-N) content than the control. Specifically, cellulase-treated groups (CEL and CLA) showed lower (p<0.05) neutral detergent fiber and acid detergent fiber contents than other groups. All additives increased the abundance of beneficial bacteria (Firmicutes, Lactiplantibacillus, and Limosilactobacillus) while they decreased abundance of Proteobacteria and microbial diversity as well. CONCLUSION: The combined application of cellulase and LAB could effectively improve the fermentation quality and microbial community of the WBG and CS mixed silage.

9.
Nano Lett ; 24(1): 386-393, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133588

RESUMO

Phyllosilicates-based nanomaterials, particularly iron-rich vermiculite (VMT), have wide applications in biomedicine. However, the lack of effective methods to activate the functional layer covered by the external inert layer limits their future applications. Herein, we report a mineral phase reconfiguration strategy to prepare novel nanozymes by a molten salt method. The peroxidase-like activity of the VMT reconfiguration nanozyme is 10 times that of VMT, due to the electronic structure change of iron in VMT. Density-functional theory calculations confirmed that the upward shifted d-band center of the VMT reconfiguration nanozyme promoted the adsorption of H2O2 on the active iron sites and significantly elongated the O-O bond lengths. The reconfiguration nanozyme exhibited nearly 100% antibacterial activity toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), much higher than that of VMT (E. coli 10%, S. aureus 21%). This work provides new insights for the rational design of efficient bioactive phyllosilicates-based nanozyme.


Assuntos
Escherichia coli , Staphylococcus aureus , Peróxido de Hidrogênio , Silicatos de Alumínio/farmacologia , Ferro , Antibacterianos/farmacologia , Antibacterianos/química
10.
Nanomedicine (Lond) ; 18(26): 1961-1978, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990993

RESUMO

The transitory placenta develops during pregnancy and mediates the blood flow between the mother and the developing baby. Placental dysfunction, including but not limited to placenta accreta spectrum, fetal growth restriction, preeclampsia and gestational trophoblastic disease, arises from abnormal placental development and can result in significant adverse maternal and fetal health outcomes. Unfortunately, there is a lack of treatment alternatives for these disorders. Nanocarriers offer versatility, including extended circulation, organ-specific targeting and intracellular transport, finely tuning therapeutic placental interactions. This thorough review explores nanotechnological strategies for addressing placental disorders, encompassing dysfunction insights, potential drug-delivery targets and recent strides in placenta-targeted nanoparticle (NP) therapies, instilling hope for effective placental malfunction treatment.


The placenta, essential for mother­baby blood exchange, may experience catastrophic abnormalities during pregnancy. Treating these issues is challenging since you must focus on the placenta while protecting the infant. Nanotechnology might be helpful in this scenario. Nanocarriers are small carriers that can transport medications to the placenta and other particular locations in the body. They can aid in the treatment of various placental issues. In our present review, we discuss nanotechnology's solutions to these issues. We discuss what goes wrong, potential therapeutic applications for nanocarriers and recent developments in their use. This might be a novel approach to treating placenta issues and maintaining the health of mothers and infants.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Retardo do Crescimento Fetal
11.
Minerva Urol Nephrol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870479

RESUMO

BACKGROUND: The objective of this retrospective, multicenter study was to analyze the factors associated with the development of urogenital sepsis after percutaneous nephrolithotomy (PCNL) and to establish a nomogram prediction model of urogenital sepsis after PCNL. METHODS: A total of 2066 postoperative PCNL patients were included from three medical institutions: Zunyi Medical University Hospital, Beijing Jishuitan Hospital Guizhou Hospital, and Fenggang County People's Hospital. Clinical data of 1623 patients from the Department of Urology of Zunyi Medical University Hospital were randomized into a training cohort (Zunyi training cohort, N.=1139) and an internal validation cohort (Zunyi internal validation cohort, N.=484) using computer generated random numbers in a 7:3 ratio. Univariate and multivariate logistic regression analyses were performed on the compliance training cohort to identify risk factors for urogenital sepsis after PCNL and to develop a column line graph prediction model based on these risk factors. Finally, Zunyi internal validation cohort and two external validation cohorts (Guiyang external cohort, N.=306; Fenggang external cohort, N.=137) were used to validate the prognostic accuracy of the nomogram prediction model. R4.2.2 statistical software was used for all statistical data analyses. RESULTS: Multifactorial logistic regression analysis of the Zuiyi training cohort (N.=1139) identified five independent risk factors associated with urogenital sepsis after PCNL, including urine culture positivity (odds ratio [OR]=5.29, P<0.001), urine nitrite positivity (OR=5.97, P<0.001), operation time ≥60 min (OR=4.4, P=0.0037), residual stone (OR=5.18, P<0.001), and size ≥30 mm (OR=3.22, P=0.0086). Nomogram were constructed based on these independent risk factors. The area under the curve (AUC) of the nomogram model was 0.907 in the in-progress sample and 0.948 after internal validation. The AUC of the model was 0.855 and 0.804 after external validation of the Guiyang external validation cohort and the Fenggang validation cohort, respectively, indicating good discrimination ability. The calibration curves of the nomogram showed good agreement, and the decision curve analysis demonstrated high clinical utility. CONCLUSIONS: Based on the clinical independent risk factors such as positive urine culture, positive urine nitrite, operation time ≥60min, stone residue, stone size ≥30mm, nomogram prediction model of urogenital sepsis after PCNL was established, which can provide reference for urologists to develop preoperative evaluation and treatment strategies for patients with percutaneous nephrolithotomy.

12.
ACS Appl Mater Interfaces ; 15(43): 50508-50521, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870285

RESUMO

Unexpected interface resistance and lithium dendrite puncture hinder the application of garnet-type solid-state electrolytes in high-energy-density systems. Different from the previous high-temperature (>180 °C) molten lithium that promotes the alloying reaction between the coating layer and Li to enhance the interface contact, herein, we introduce liquid-metal-like SbCl3 to construct a three-dimensional Li+ directional-selection interlayer by in situ low-temperature lithiation (80 °C). An interlayer with a more negative interface energy composed of SbLi3 and LiCl exhibits a superior affinity with Li and LGLZO, which reduces the interface resistance and suppresses the growth of Li dendrites by an insulated electron. The introduction of the SbCl3 modification layer into Li/Li symmetric cells enables charge/discharge at a current density of 6.0 mA cm-2 and operation for more than 1000 h under 2.0 mA cm-2 at room temperature. The full cells with the LiFePO4 cathode exhibit a high residual capacity of 144.8 mAh g-1 at 0.5 C after 1000 cycles and excellent cycling stability with a retention ratio of 94.7% at 1 C after 600 cycles. The low-temperature lithiation method based on an energy-saving perspective should be applied to other types of solid-state electrolyte modification strategies.

13.
ACS Appl Mater Interfaces ; 15(41): 48110-48121, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796023

RESUMO

The ionic conductivity, phase components, and microstructures of LATP depend on its synthesis process. However, their relative importance and their interactions with synthesis process parameters (such as source materials, calcination temperature, and sintering temperature) remain unclear. In this work, different source materials were used to prepare LATP via the solid-state reaction method under different calcination and sintering temperatures, and an analysis via orthogonal experiments and machine learning was used to systematically study the effects of the process parameters. Sintering temperatures had the greatest effect on the total ionic conductivity of LATP pellets, followed by the sources and calcination temperatures. Sources, as the foundational factors, directly determine the composition of a major secondary phase of LATP pellets, which influences the whole process. The calcination temperature had limited impact on the ion conductivity of LATP pellets if pellets were sintered under the optimal temperature. The sintering temperature is the most important factor that influences the ion conductivity by eliminating most secondary phases and altering the microstructure of LATP, including the intergranular contact, grain size, relative densities, etc. This work offers a novel perspective to comprehend the synthesis of solid-state electrolytes beyond LATP.

14.
Environ Pollut ; 336: 122460, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634569

RESUMO

Fomesafen is a diphenyl ether herbicide used to control the growth of broadleaf weeds in bean fields. The persistence, phytotoxicity, and negative impact on crop rotation associated with this herbicide have led to an increasing concern about the buildup of fomesafen residues in agricultural soils. The exigent matter of treatment and remediation of soils contaminated with fomesafen has surfaced. Nevertheless, the degradation pathway of fomesafen in soil remains nebulous. In this study, Bacillus sp. Za was utilized to degrade fomesafen residues in black and yellow brown soils. Fomesafen's degradation rate by strain Za in black soil reached 74.4%, and in yellow brown soil was 69.2% within 30 days. Twelve intermediate metabolites of fomesafen were identified in different soils, with nine metabolites present in black soil and eight found in yellow brown soil. Subsequently, the degradation pathway of fomesafen within these two soils was inferred. The dynamic change process of soil bacterial community structure in the degradation of fomesafen by strain Za was analyzed. The results showed that strain Za potentially facilitate the restoration of bacterial community diversity and richness in soil samples treated with fomesafen, and there were significant differences in species composition at phylum and genus levels between these two soils. However, both soils shared a dominant phylum and genus, Actinobacteriota, Proteoobacteria, Firmicutes and Chloroflexi dominated in two soils, with a high relative abundance of Sphingomonas and Bacillus. Moreover, an intermediate metabolite acetaminophen degrading bacterium, designated as Pseudomonas sp. YXA-1, was isolated from yellow brown soil. When strain YXA-1 was employed in tandem with strain Za to remediate fomesafen contaminated soil, the degradation rate of fomesafen markedly increased. Overall, this study furnishes crucial insights into the degradation pathway of fomesafen in soil, and presents bacterial strain resources potentially beneficial for soil remediation in circumstances of fomesafen contamination.


Assuntos
Bacillus , Herbicidas , Poluentes do Solo , Bacillus/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Solo/química , Bactérias/metabolismo , Herbicidas/análise , Biodegradação Ambiental
15.
Appl Microbiol Biotechnol ; 107(16): 5269-5279, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395748

RESUMO

Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 µM (fomesafen), 23.64 µM (bifenox), 26.19 µM (fluoroglycofen), 28.24 µM (acifluorfen), and 36.32 µM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.


Assuntos
Bacillus , Herbicidas , Bacillus/genética , Bacillus/metabolismo , Herbicidas/metabolismo , Simulação de Acoplamento Molecular , Éteres Difenil Halogenados , Biotransformação , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo
16.
Front Psychiatry ; 14: 1209638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333916

RESUMO

Objective: Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder caused by a complex interaction between genetic and environmental risk factors. The balance between antioxidant capacity and oxidative stress (OS) induced free radicals may be crucial during the pathophysiological development of ASD. Methods: In this study, 96 children with ASD who met the diagnostic and statistical manual of mental disorders were collected, and the number of children in the typical development (TD) group was matched by 1:1. Digital PCR (dPCR) for telomere length (TL) expression in ASD in peripheral blood leukocytes. Urine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) content were measured by tandem triple quadrupole mass spectrometry and corrected by urinary creatinine levels. The levels of superoxide dismutase (SOD), catalase (CAT), and capacity (AOC) were detected by kits. Results: The TL of the ASD group was shorter than the TD group (p < 0.01) and had some accurate predictive significance for the identification of ASD (AUC = 0.632, 95% CI: 0.533-0.710, p = 0.002). Both 8-OHdG content and SOD activity in the ASD group were significantly higher than those in the TD group (p < 0.05). Shortened TL (Monofactor: 2.20 (1.22, 3.96), p = 0.009; Multifactor: 2.22 (1.22, 4.00), p = 0.008) and reduced CAT activity (Monofactor: 2.31 (1.28, 4.17), p = 0.006; Multifactor: 2.31 (1.28, 4.18), p = 0.006) are risk factors for the development of ASD, while reduced 8-OHdG content (Monofactor: 0.29 (0.14, 0.60), p = 0.001; Multifactor: 0.27 (0.13, 0.57), p = 0.001) and reduced SOD activity (Monofactor: 0.55 (0.31, 0.98), p = 0.042; Multifactor: 0.54 (0.30, 0.98), p = 0.042) are protective factors for the development of ASD. Conclusion: In this study, TL and OS were significantly different between the ASD group and the TD group. As guanine-rich telomere sequences were likely damaged by oxygen free radicals, creating OS, which is a factor in the incidence and progression of ASDs. In conclusion, oxidative damage occurs in the bodies of children with ASD, which may lead to sustained disease progression and severe clinical manifestations. We assume that timely supplementation of antioxidants is very likely to be a potential treatment for early intervention in children with ASD. Identification and detection of OS-related biomarkers may contribute to early diagnosis and timely interventions in young patients with ASD.

17.
Proc Natl Acad Sci U S A ; 120(21): e2208276120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186859

RESUMO

Iron-chalcogenide superconductors FeSe1-xSx possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (µSR) measurements in FeSe1-xSx superconductors for 0 ≤ x ≤ 0.22 covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperature Tc for all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-field µSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x > 0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1-xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.

18.
Environ Sci Technol ; 57(23): 8628-8637, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37254500

RESUMO

Reactive oxygen species (ROS) play key roles in driving biogeochemical processes. Recent studies have revealed nonphotochemical electron transfer from redox-active substances (e.g., iron minerals) to oxygen as a new route for ROS production. Yet, naturally occurring iron minerals mainly exist in thermodynamically stable forms, restraining their potential for driving ROS production. Here, we report that tide-induced redox oscillations can activate thermodynamically stable iron minerals for enhanced ROS production. •OH production in intertidal soils (15.8 ± 0.5 µmol/m2) was found to be 5.9-fold more efficient than those in supratidal soils. Moreover, incubation of supratidal soils under tidal redox fluctuations dramatically enhanced •OH production by 4.3-fold. The tidal hydrology triggered redox alternation between biotic reduction and abiotic oxidation and could accelerate the production of reactive ferrous ions and amorphous ferric oxyhydroxides, making thermodynamically stable iron minerals into redox-active metastable iron phases (RAMPs) with reduced crystallinity and promoting surface electrochemical activities. Those RAMPs displayed enhanced redox activity for ROS production. Investigations of nationwide coastal soils verified that tide-induced redox oscillations could ubiquitously activate soils for enhanced ROS production. Our study demonstrates the effective formation of RAMPs from redox oscillations by hydrological perturbations, which provides new insights into natural ROS sources.


Assuntos
Ferro , Minerais , Ferro/química , Espécies Reativas de Oxigênio , Minerais/química , Compostos Férricos , Oxirredução , Solo
19.
Environ Sci Technol ; 57(23): 8610-8616, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37226678

RESUMO

The hydroxyl radical (•OH) is a potent oxidant and key reactive species in mediating element cycles and pollutant dynamics in the natural environment. The natural source of •OH is historically linked to photochemical processes (e.g., photoactivation of natural organic matter or iron minerals) or redox chemical processes (e.g., reaction of microbe-excreted or reduced iron/natural organic matter/sulfide-released electrons with O2 in soils and sediments). This study revealed a ubiquitous source of •OH production via water vapor condensation on iron mineral surfaces. Distinct •OH productions (15-478 nM via water vapor condensation) were observed on all investigated iron minerals of abundant natural occurrence (i.e., goethite, hematite, and magnetite). The spontaneous •OH productions were triggered by contact electrification and Fenton-like activation of hydrogen peroxide (H2O2) at the water-iron mineral interface. Those •OH drove efficient transformation of organic pollutants associated on iron mineral surfaces. After 240 cycles of water vapor condensation and evaporation, bisphenol A and carbamazepine degraded by 25%-100% and 16%-51%, respectively, forming •OH-mediated arene/alkene hydroxylation products. Our findings largely broaden the natural source of •OH. Given the ubiquitous existence of iron minerals on Earth's surface, those newly discovered •OH could play a role in the transformation of pollutants and organic carbon associated with iron mineral surfaces.


Assuntos
Poluentes Ambientais , Ferro , Radical Hidroxila , Vapor , Peróxido de Hidrogênio , Minerais , Oxirredução
20.
Mol Omics ; 19(5): 418-428, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37000693

RESUMO

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific hepatobiliary disease, leading to an abnormal increase in total bile acid in the blood of pregnant women. To systematically explore the similarities and differences in metabolites and metabolic pathways among three types of biological samples from ICP women, a study of 18 ICP and 6 healthy (as a normal control) pregnant women was performed to investigate their clinical information and biochemical features. Based on validated LC-MS/MS methods 1-5 for hydrophilic and hydrophobic metabolites (molecular weight <2000 Dalton), an untargeted-metabolomic strategy was applied to 24 pregnant women to determine the metabolites from 22 serum, 15 placental and 22 urine samples. Then 1137 metabolites from serum, 876 metabolites from placental tissue and 311 metabolites from urine with a coefficient of variation <30% in the pooled quality control samples were found. Furthermore, orthogonal partial least squares-discriminate analysis (OPLS-DA), correlation analysis, chemical enrichment analysis and metabolic pathway analysis were carried out by a bioinformatics process. On the OPLS-DA model analysis, the metabolites in urine were better than those in serum or placental tissue to reflect the metabolic changes of ICP disease. Some metabolites were significantly changed in serum (n = 71), placental tissue (n = 46) and urine (n = 36), such as bile acids, triacylglycerols, lysoPCs, and steroids. Primary bile acid biosynthesis was the main metabolic pathway in ICP disease, and taurine and hypotaurine metabolism and sphingolipid metabolism were also found. More specifically, bile acids increased and steroids decreased in the serum, placental and urine samples. For complex metabolic diseases such as ICP disease, untargeted-metabolomic analysis of multiple biological samples could provide a systematic understanding of the changes in metabolic types and pathways.


Assuntos
Ácidos e Sais Biliares , Placenta , Feminino , Gravidez , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Esteroides , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...